Exercice 1 : Déterminer une densité

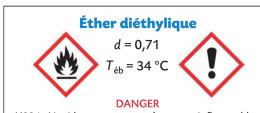
Pour déterminer la densité du dichlorométhane, on pèse une fiole jaugée de volume V = 50,0 mL remplie de ce liquide. On trouve une masse m = 128,7 g. La masse de la fiole vide est $m_0 = 61,5$ g.

1. (2 pts) **Déterminer** la masse volumique de ce liquide et l'exprimer en g.mL⁻¹ puis en g.L⁻¹.

$$\rho = \frac{m}{V} = \frac{128,7 - 61,5}{50,0} = 1,34 \ g. \ mL^{-1} = 1,34. \ 10^{3} \ g. \ L^{-1}$$

2. (1 pt) **En déduire** la densité du dichlorométhane.

$$d = \frac{\rho_{dichloro}}{\rho_{equ}} = \frac{1,34}{1,00} = 1,34$$


Exercice 2 : Utiliser une donnée de densité

On souhaite prélever un volume V = 100 mL d'éther diéthylique dont un extrait d'étiquette est reproduit ci-après.

1. (2 pts) Calculer la masse de liquide à peser.

$$m = \rho_{\acute{e}ther} \times V = d \times \rho_{eau} \times V = 0.71 \times 1.00 \times 100 = 71 g$$

 $m=
ho_{\acute{e}ther} imes V=d imes
ho_{eau} imes V=0$,71 imes 1,00 imes 100 = 71 g 2. (1 pt) **Préciser** les mesures de sécurité à respecter pour manipuler sans danger cette espèce.

H224 : Liquide et vapeurs extrêmement inflammables

H302 : Nocif en cas d'ingestion

H336: Peut provoquer somnolence ou vertiges

Il faut manipuler avec une blouse et faire attention à ne pas inhaler les vapeurs.

Exercice 3 : Sirop de menthe bleu

Certains sirops de menthe de couleur bleue contiennent le colorant alimentaire E131. On cherche à déterminer la concentration en masse γ (E131) de ce colorant à l'aide d'un dosage.

Pour cela, on réalise une échelle de teintes constituée de quatre solutions filles, de volume $V_f = 20,0$ mL.

Elles sont réalisées en diluant une solution mère de concentration $\gamma = 12,0$ mg.L⁻¹ en colorant E131.

On note V_m le volume de solution mère prélevé pour préparer les solutions filles.

Solution fille	S_1	S_2	S ₃	S ₄
Volume mère V _m (mL)	13,3	10,0	5,0	2,5
Volume fille V _f (mL)	20,0	20,0	20,0	20,0
Facteur de dilution F	1,5	2,0	4,0	8,0
Concentration en masse γ (mg.L ⁻¹)	8,0	6,0	3,0	1,5

Le sirop de menthe est dilué 10 fois. Le sirop dilué est placé dans un tube à essai identique à ceux de l'échelle de teintes. La teinte du sirop de menthe bleue dilué est comprise entre celle des solutions S1 et S2.

1. (3 pts) En détaillant les calculs, **compléter** les valeurs manquantes pour la solution S_3 .

$$\begin{split} \gamma_{m\`{e}re} \times V_{m\`{e}re} &= \gamma_{fille} \times V_{fille} \text{ donc } V_m = \frac{\gamma_{fille} \times V_{fille}}{\gamma_{m\`{e}re}} = \frac{3,0 \times 20,0}{12,0} = 5,0 \text{ } mL \\ f &= \frac{V_f}{V_m} = \frac{20,0}{5,0} = 4,0 \end{split}$$

- 2. (4 pts) Élaborer le protocole pour réaliser la solution S₄. Soyez précis sur la verrerie à utiliser.
- Dans un bécher, verser suffisamment de solution mère pour pouvoir en prélever le volume V_{mère}. En inclinant le bécher, prélever 2,5 mL de solution mère à l'aide d'une pipette graduée.
- Verser le volume prélevé dans une fiole jaugée de volume 20,0 mL.
- Ajouter de l'eau distillée jusqu'au 2/3 de la fiole, boucher et agiter.
- Ajouter de l'eau distillée jusqu'à ce que le bas du ménisque soit tangent au trait de jauge, boucher et agiter pour homogénéiser.
- 3. (1 pt) **Déterminer** un encadrement de la concentration en masse γ (E131) du sirop dilué.

La teinte de la solution diluée est comprise entre les teintes des solutions 1 et 2 donc la concentration est comprise entre γ_1 et γ_2 soit 6,0 $mg.L^{-1} \le \gamma_{dilu\acute{e}} \le 8,0 \ mg.L^{-1}$.

4. (1 pt) **Proposer** une méthode permettant de diminuer l'incertitude sur la détermination de la valeur de γ (E131). Pour diminuer l'incertitude, il faudrait mesurer une grandeur physique pour faire un dosage par étalonnage.